Leveraging Gabor Phase for Face Identification in Controlled Scenarios

نویسندگان

  • Yang Zhong
  • Haibo Li
چکیده

Gabor features have been widely employed in solving face recognition problems in controlled scenarios. To construct discriminative face features from the complex Gabor space, the amplitude information is commonly preferred, while the other one — the phase — is not well utilized due to its spatial shift sensitivity. In this paper, we address the problem of face recognition in controlled scenarios. Our focus is on the selection of a suitable signal representation and the development of a better strategy for face feature construction. We demonstrate that through our Block Matching scheme Gabor phase information is powerful enough to improve the performance of face identification. Compared to state of the art Gabor filtering based approaches, the proposed algorithm features much lower algorithmic complexity. This is mainly due to our Block Matching enables the employment of high definition Gabor phase. Thus, a single-scale Gabor frequency band is sufficient for discrimination. Furthermore, learning process is not involved in the facial feature construction, which avoids the risk of building a database-dependent algorithm. Benchmark evaluations show that the proposed learning-free algorithm outperforms state-of-the-art Gabor approaches and is even comparable to Deep

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach

Different from face verification, face identification is much more demanding. To reach comparable performance, an identifier needs to be roughly N times better than a verifier. To expect a breakthrough in face identification, we need a fresh look at the fundamental building blocks of face recognition. In this paper we focus on the selection of a suitable signal representation and better matchin...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

The Complete Gabor-Fisher Classifier for Robust Face Recognition

This paper develops a novel face recognition technique called Complete Gabor Fisher Classifier (CGFC). Different from existing techniques that use Gabor filters for deriving the Gabor face representation, the proposed approach does not rely solely on Gabor magnitude information but effectively uses features computed based on Gabor phase information as well. It represents one of the few successf...

متن کامل

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

Face Recognition Using Local Quantized Patterns and Gabor Filters

The problem of face recognition in a natural or artificial environment has received a great deal of researchers’ attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016